26 research outputs found

    On controllability and control laws for discrete linear repetitive processes

    No full text
    Repetitive processes are a distinct class of 2D systems (i.e. information propagation in two independent directions) of both systems theoretic and applications interest. They cannot be controlled by the direct extension of existing techniques from either standard (termed 1D here) or 2D systems theory. This article develops significant new results on the relationships between one physically motivated concept of controllability for the so-called discrete linear repetitive processes and the structure and design of control laws, including the case when disturbances are present

    On the Development of SCILAB Compatible Software for the Analysis and Control of Repetitive Processes

    No full text
    In this paper further results on the development of a SCILAB compatible software package for the analysis and control of repetitive processes is described. The core of the package consists of a simulation tool which enables the user to inspect the response of a given example to an input, design a control law for stability and/or performance, and also simulate the response of a controlled process to a specified reference signal

    A 2D systems approach to iterative learning control for discrete linear processes with zero Markov parameters

    No full text
    In this paper a new approach to iterative learning control for the practically relevant case of deterministic discrete linear plants with uniform rank greater than unity is developed. The analysis is undertaken in a 2D systems setting that, by using a strong form of stability for linear repetitive processes, allows simultaneous con-sideration of both trial-to-trial error convergence and along the trial performance, resulting in design algorithms that can be computed using Linear Matrix Inequalities (LMIs). Finally, the control laws are experimentally verified on a gantry robot that replicates a pick and place operation commonly found in a number of applications to which iterative learning control is applicable

    A 2D Hopfield Neural Network approach to mechanical beam damage detection

    Get PDF
    The aim of this paper is to present a method based on a 2D Hopfield Neural Network for online damage detection in beams subjected to external forces. The underlying idea of the method is that a significant change in the beam model parameters can be taken as a sign of damage occurrence in the structural system. In this way, damage detection can be associated to an identification problem. More concretely, a 2D Hopfield Neural Network uses information about the way the beam vibrates and the external forces that are applied to it to obtain time-evolving estimates of the beam parameters at the different beam points. The neural network organizes its input information based on the Euler-Bernoulli model for beam vibrations. Its performance is tested with vibration data generated by means of a different model, namely Timonshenko's, in order to produce more realistic simulation conditions

    Experimentally supported 2D systems based iterative learning control law design for error convergence and performance

    No full text
    This paper considers iterative learning control law design for both trial-to-trial error convergence and along the trial performance. It is shown how a class of control laws can be designed using the theory of linear repetitive processes for this problem where the computations are in terms of Linear Matrix Inequalities (LMIs). It is also shown how this setting extends to allow the design of robust control laws in the presence of uncertainty in the along the trial dynamics. Results from the experimental application of these laws on a gantry robot performing a pick and place operation are also given
    corecore